



























業(yè)務(wù)咨詢
400-893-8989
行政總機(jī)
010-64303888
微信掃描二維碼 立即在線咨詢
基于圖譜的推薦方法、系統(tǒng)、存儲(chǔ)介質(zhì)及電子設(shè)備
2024-02-27

本發(fā)明公開(kāi)了一種基于圖譜的推薦方法、系統(tǒng)、存儲(chǔ)介質(zhì)及電子設(shè)備,推薦方法包括:用戶特征獲取步驟:構(gòu)建并通過(guò)社交網(wǎng)絡(luò)圖譜獲取社交網(wǎng)絡(luò)圖譜用戶特征;物品特征獲取步驟:構(gòu)建并通過(guò)知識(shí)圖譜獲取知識(shí)圖譜物品特征;融合步驟:將所述社交網(wǎng)絡(luò)圖譜用戶特征與所述知識(shí)圖譜物品特征分別與推薦用戶特征及推薦物品特征進(jìn)行融合獲得推薦用戶隱特征及推薦物品隱特征;推薦步驟:根據(jù)所述推薦用戶隱特征及所述推薦物品隱特征輸出推薦值。本發(fā)明通過(guò)引入社交網(wǎng)絡(luò)圖譜,解決信息缺乏問(wèn)題;同時(shí)使用卷積神經(jīng)網(wǎng)絡(luò)解決無(wú)法充分提取潛在特征的問(wèn)題。
一種基于圖譜的推薦方法,其特征在于,包括:用戶特征獲取步驟:構(gòu)建并通過(guò)社交網(wǎng)絡(luò)圖譜獲取社交網(wǎng)絡(luò)圖譜用戶特征;物品特征獲取步驟:構(gòu)建并通過(guò)知識(shí)圖譜獲取知識(shí)圖譜物品特征;融合步驟:將所述社交網(wǎng)絡(luò)圖譜用戶特征與所述知識(shí)圖譜物品特征分別與推薦用戶特征及推薦物品特征進(jìn)行融合獲得推薦用戶隱特征及推薦物品隱特征;推薦步驟:根據(jù)所述推薦用戶隱特征及所述推薦物品隱特征輸出推薦值。

申請(qǐng)?zhí)枺篊N202011321111.4
申請(qǐng)(專利權(quán))人:北京明略軟件系統(tǒng)有限公司
公開(kāi)日期(公開(kāi)):2021.02.12
公開(kāi)日期(授權(quán)):2024.02.27
推薦閱讀
全球雙榜SOTA!明略科技專有大模型 Mano開(kāi)啟GUI智能操作新時(shí)代
2025-09-28
明略科技推出的GUI大模型Mano在Mind2Web和OSWorld兩大基準(zhǔn)測(cè)試中取得了創(chuàng)紀(jì)錄的SOTA成績(jī),成功率達(dá)到40.1%。通過(guò)在線強(qiáng)化學(xué)習(xí)和自動(dòng)數(shù)據(jù)采集,Mano為GUI智能體領(lǐng)域提供了可擴(kuò)展的新范式,顯著提升了復(fù)雜任務(wù)的執(zhí)行能力。該技術(shù)的突破不僅推動(dòng)了自動(dòng)化邊界的擴(kuò)展,也為企業(yè)智能化轉(zhuǎn)型提供了強(qiáng)有力的支持
了解更多
官宣!明略科技推出專有大模型產(chǎn)品線DeepMiner,可信商業(yè)數(shù)據(jù)分析智能體終于能用了!
2025-09-22
明略科技推出專有大模型產(chǎn)品線DeepMiner,以“可信智能體+可信數(shù)據(jù)”雙輪驅(qū)動(dòng),解決企業(yè)智能體落地中幻覺(jué)率高、過(guò)程不透明等痛點(diǎn)。該產(chǎn)品通過(guò)多智能體協(xié)同架構(gòu)、企業(yè)級(jí)數(shù)據(jù)整合及全流程透明化設(shè)計(jì),降低幻覺(jué)率并支持知識(shí)沉淀,其自研Mano和Cito模型分別實(shí)現(xiàn)精準(zhǔn)執(zhí)行與深度推理,助力企業(yè)構(gòu)建可信生產(chǎn)力。
了解更多
明略科技 Mano Technical Report
2025-09-18
Graphical user interfaces (GUIs) are the primary medium for human-computer interaction, yet automating GUI interactions remains challenging due to the complexity of visual elements, dynamic environments, and the need for multi-step reasoning. Existing methods based on vision-language models (VLMs) often suffer from limited resolution, domain mismatch, and insufficient sequential decisionmaking capability. To address these issues, we propose Mano, a robust GUI agent built upon a multi-modal foundation model pre-trained on extensive web and computer system data. Our approach integrates a novel simulated environment for high-fidelity data generation, a three-stage training pipeline (supervised fine-tuning, offline reinforcement learning, and online reinforcement learning), and a verification module for error recovery. Mano demonstrates state-of-the-art performance on multiple GUI benchmarks, including Mind2Web and OSWorld, achieving significant improvements in success rate and operational accuracy. Our work provides new insights into the effective integration of reinforcement learning with VLMs for practical GUI agent deployment, highlighting the importance of domain-specific data, iterative training, and holistic reward design.
了解更多聯(lián)系我們
關(guān)注明略
在線咨詢
銷售熱線
400-893-8989
投資者關(guān)系
ir@mininglamp.com
Copyright@2025 北京明略軟件系統(tǒng)有限公司 京ICP備15016868號(hào) 京公網(wǎng)安備11010802024262
信息填寫
